Electron Crystallography of Phthalocyanines

Author(s):  
J. R. FRYER

It is shown that it is possible to obtain structural information from small (<100 nm) phthalocyanine crystals by using crystallographic direct phasing methods applied to electron diffraction data. This technique is both quantitative and does not suffer from the difficulties associated with high-resolution electron microscopy. Structural information has been obtained from both tetra- and octa chloro-copper phthalocyanines, and the results compared with the hydrogenated and perchloro members of the series.

Author(s):  
J.M. Howe ◽  
R. Gronsky

The technique of high-resolution electron microscopy (HREM) is invaluable to the materials scientist because it allows examination of microstructural features at levels of resolution that are unobtainable by most other methods. Although the structural information which can be determined by HREM and accompanying image simulations has been well documented in the literature, there have only been a few cases where this technique has been used to reveal the chemistry of individual columns or planes of atoms, as occur in segregated and ordered materials.


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


Sign in / Sign up

Export Citation Format

Share Document